LEIBNIZ-INFORMATIONSZENTRUM TECHNIK UND NATURWISSENSCHAFTEN UNIVERSITÄTSBIBLIOTHEK



## **Open Research Knowledge Graph**

Markus Stocker & *The Team* Porto, September 17, 2019 Open Science Fair 2019



#### LEIBNIZ-INFORMATIONSZENTRUM TECHNIK UND NATURWISSENSCHAFTEN UNIVERSITÄTSBIBLIOTHEK

#### Jennifer D'Souza

Researcher



Allard Oelen Developer



Markus Stocker Co-Lead



Mohamad Yaser Jaradeh

Developer

Arthur Brack

PhD Student













Manuel Prinz



Developer

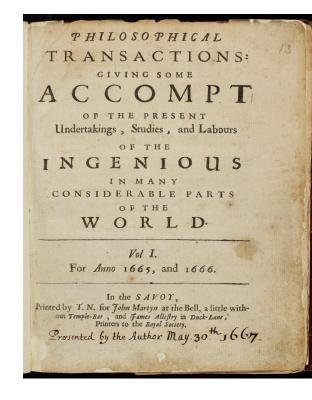















- The global scientific knowledge base would be more than a document repository
- Scientific information and knowledge would be FAIR also for machines
- Currently
  - Findability could be better
  - Assuming OA, accessibility is OK
  - Interoperability and Reusability is non-existent
- The scholarly communications infrastructure is stuck in the last century
- We have managed to *digitize* documents that used to be in print
- While other areas have seen a transformative *digitalization*

### **Digitization of scholarly communications**





### THE INTELLECTUAL OBSERVER.

JANUARY, 1865.

#### CELESTIAL CHEMISTRY, AND THE PHYSICAL CONSTITUTION OF THE STARS AND NEBULÆ.

BY THOMAS W. BURE, F.R.A.S., F.C.S.

#### (With a Coloured Plate.)

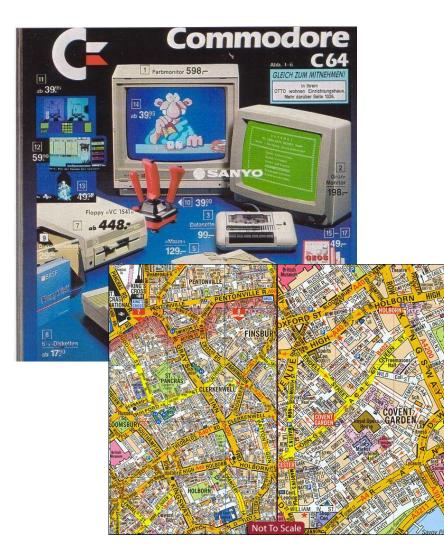
Few things are more remarkable in the present aspect of science than the manner in which its various departments come into contact one with another, thus aiding the student in a way quite unlooked for, and throwing light upon the subject of research from a quarter whence it was least expected. As when stones are thrown into water, so the circle of each science at first seems to be totally distinct from all the others, but gradually these separate circles enlarge and widen, until they intersect and produce larger circles and wider generalizations in the increasing domain of human knowledge. Thus, chemistry was, in the time of Davy, furnished with a new and powerful analytical agent in the shape of voltaic electricity, and the same agency, which is itself evoked by chemical action, has given us the long series of discoveries in electro magnetism, culminating in the splendid practical application of the electric telegraph. So, too, photography, which is essentially chemical in its nature, has been of the greatest service to the physicist in furnishing him with a constant and unerring record of the indications of his barometer, thermometer, and magnetic instru-

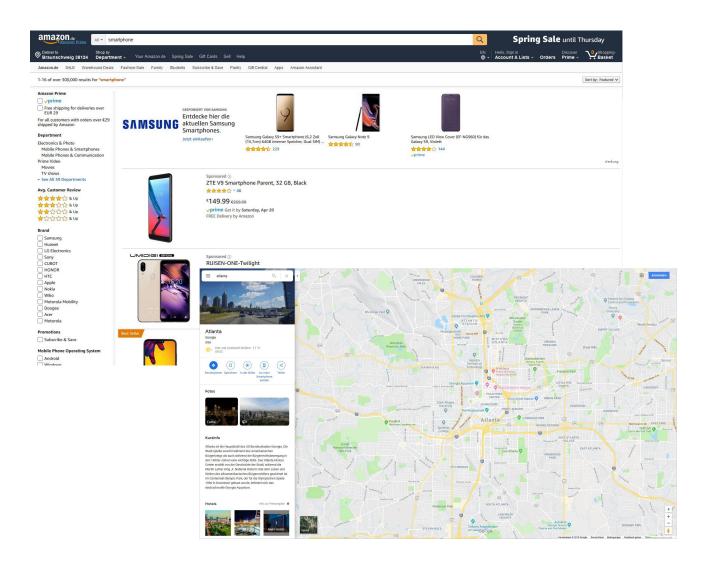
#### AGDISTIS - Graph-Based Disambiguation of Named Entities using Linked Data

Ricardo Usbeck<sup>1,2</sup>, Axel-Cyrille Ngonga Ngomo<sup>1</sup>, Michael Röder<sup>1,2</sup>, Daniel Gerber<sup>1</sup>, Sandro Athaide Coelho<sup>3</sup>, Sören Auer<sup>4</sup>, and Andreas Both<sup>2</sup>

<sup>1</sup> University of Leipzig, Germany, <sup>2</sup> R & D, Unister GmbH, Germany, <sup>3</sup> Federal University of Juiz de Fora, Brazil, <sup>4</sup> University of Bonn & Fraunhofer IAIS, Germany email: (usbeck]ngonga@informatik.uni-leipzig.de

Abstract. Over the last decades, several billion Web pages have been made available on the Web. The ongoing transition from the current Web of unstructured data to the Web of Data yet requires scalable and accurate approaches for the extraction of structured data in RDF (Resource Description Framework) from these websites. One of the key steps towards extracting RDF from text is the disambiguation of named entities. While several approaches aim to tackle this problem, they still achieve poor accuracy. We address this drawback by presenting AGDIS-TIS, a novel knowledge-base-agnostic approach for named entity disambiguation. Our approach combines the Hypertext-Induced Topic Search (HITS) algorithm with label expansion strategies and string similarity measures. Based on this combination, AGDISTIS can efficiently detect the correct URIs for a given set of named entities within an input text. We evaluate our approach on eight different datasets against state-of-theart named entity disambiguation frameworks. Our results indicate that we outperform the state-of-the-art approach by up to 29% F-measure.


#### 1 Introduction


The vision behind the Web of Data is to provide a new machine-readable layer to the Web where the content of Web pages is annotated with structured data (e.g., RDFa [1]). However, the Web in its current form is made up of at least 15 billion Web pages.<sup>1</sup> Most of these websites are unstructured in nature. Realizing the vision of a usable and up-to-date Web of Data thus requires scalable and accurate natural-language-processing approaches that allow extracting RDF from such unstructured data. Three tasks play a central role when extracting RDF from unstructured data: named entity recognition (NER), named entity disambiguation (NED), also known as entity linking [16], and relation extraction (RE). For the first sentence of Example 1, an accurate named entity recognition approach would return the strings Barack Obama and Washington, D.C.. A high-quality DBpedia-based named entity disambiguation (NED) approach would use these already recognized named entities and map the strings

<sup>1</sup> Data gathered from http://www.worldwidewebsize.com/ on January 4th, 2014.

## **Digitalization elsewhere**







## **Open Research Knowledge Graph**



- Digital library for machine actionable scientific knowledge communicated in scholarly literature
- "Deep Content Analysis": Not just bibliographic metadata and beyond keywords
- Multimodality with crowdsourcing, text mining, and virtual research environments
- At time of creating knowledge as well as writing, submitting, publishing, reading articles
- There is a public alpha version at <a href="https://labs.tib.eu/orkg/">https://labs.tib.eu/orkg/</a>
- API documentation at <a href="https://labs.tib.eu/orkg/doc/api/">https://labs.tib.eu/orkg/doc/api/</a>
- Code is Open Source and available at <a href="https://gitlab.com/TIBHannover/orkg">https://gitlab.com/TIBHannover/orkg</a>

## Example



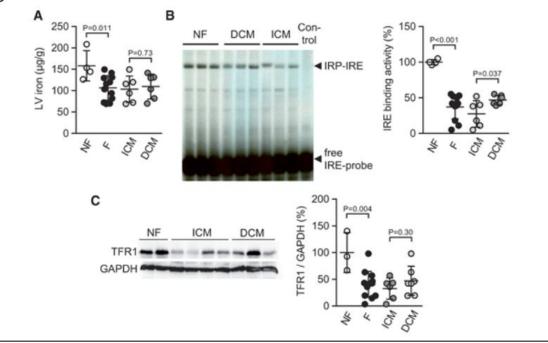
European Heart Journal (2017) **38**, 362–372 doi:10.1093/eurheartj/ehw333 BASI

## Iron-regulatory proteins secure iron availa in cardiomyocytes to prevent heart failure

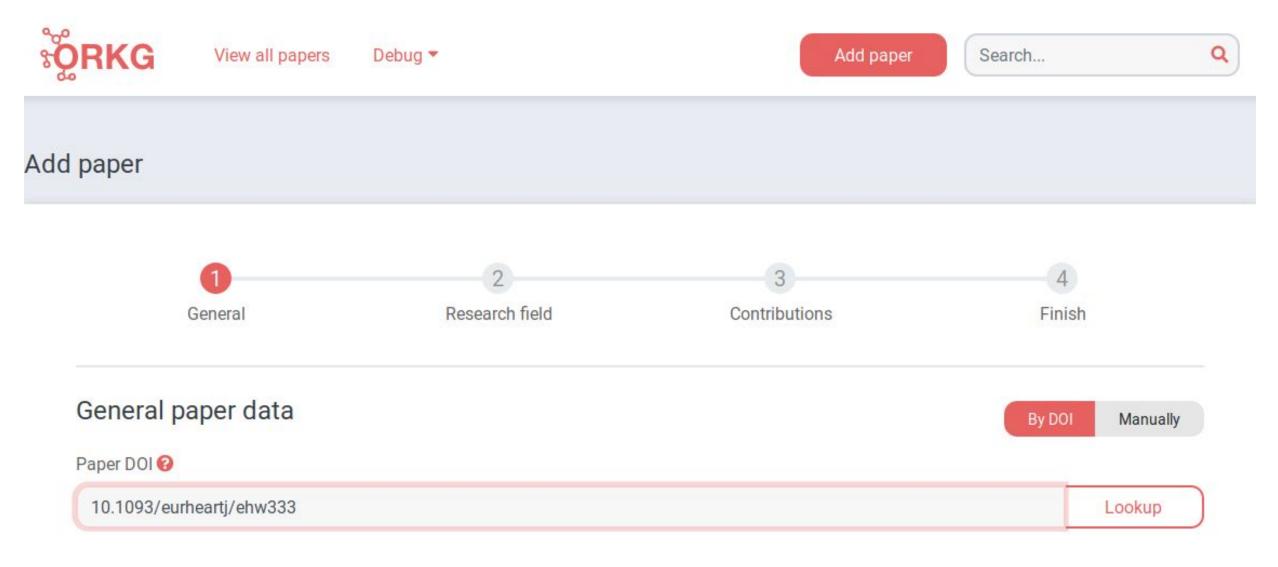
Saba Haddad<sup>1,2</sup>, Yong Wang<sup>1,2</sup>, Bruno Galy<sup>3,4</sup>, Mortimer Korf-Klingebiel<sup>1</sup>, Valentin Hirsch<sup>1,2</sup>, Abdul M. Baru<sup>1,2</sup>, Fatemeh Rostami<sup>1,2</sup>, Marc R. Reboll Jörg Heineke<sup>2</sup>, Ulrich Flögel<sup>5</sup>, Stephanie Groos<sup>6</sup>, André Renner<sup>7</sup>, Karl Toi Fabian Zimmermann<sup>9</sup>, Stefan Engeli<sup>10</sup>, Jens Jordan<sup>10</sup>, Johann Bauersachs<sup>2</sup> Matthias W. Hentze<sup>3</sup>, Kai C. Wollert<sup>1,2</sup>, and Tibor Kempf<sup>1,2</sup>\*

<sup>1</sup>Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; <sup>2</sup>Department of Card Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; <sup>3</sup>European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heide <sup>4</sup>Division of Virus-associated Carcinogenesis, German Cancer Research Centre, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; <sup>5</sup>Department of University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; <sup>6</sup>Institute of Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, Germany; <sup>7</sup>Department of Thoracic and Cardiovascular Surgery, University of Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany; <sup>8</sup>Department Pneumology, University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; <sup>9</sup>Department of Analytical Chemistry, Leibniz University Hann 30167 Hannover, Germany; and <sup>10</sup>Institute of Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany

Received 30 November 2015; revised 27 June 2016; accepted 12 July 2016; online publish-ahead-of-print 21 August 2016


See page 373 for the editorial comment on this article (doi: 10.1093/eurheartj/ehw386)

#### Results


# Reduced iron content, IRE binding activity, and transferrin receptor expression in the failing human heart

Consistent with previous reports,<sup>5,6</sup> iron concentration was significantly lower in LV tissue samples from patients with advanced heart failure than in LV tissue samples from unused donor hearts (*Figure1A*). As shown by electrophoretic mobility shift assays, IRE binding activity was significantly reduced in failing hearts (most pronounced in patients with ischemic cardiomyopathy) (*Figure1B*). Protein expression levels of the transferrin receptor were significantly lower in failing hearts than in the controls (*Figure1C*).

Figure 1



| $\mathbf{C}$ | Fil | e l | Edit | Vie     | W      | Run  | Ke   | ernel                                     | Tabs                                                     | Settings                                | Help  | p                                  |     |   |
|--------------|-----|-----|------|---------|--------|------|------|-------------------------------------------|----------------------------------------------------------|-----------------------------------------|-------|------------------------------------|-----|---|
| Files        |     | ork |      | nb<br>X | ,<br>D |      | •    |                                           | C                                                        | <b>Cod</b> e                            | ~     | <pre>     Python </pre>            | 3 ( | ) |
| Running      |     |     | In   | [2]     |        |      | = [  | (99,<br>(96,<br>(100,                     | 52),<br>40),<br>, 38),                                   |                                         | art', | , 'failing heart']                 |     |   |
| Commands     |     |     |      |         |        |      |      | (np.r<br>(np.r<br>(np.r<br>(np.r<br>(np.r | , 18),<br>nan, 1<br>nan, 5<br>nan, 4<br>nan, 5<br>nan, 5 | 1),<br>5),<br>42),<br>55),<br>53),      |       |                                    |     |   |
| Cell Tools   |     |     |      |         |        |      | d.Da | (np.r<br>(np.r<br>ataFr                   |                                                          | 12),<br>50)]<br>From_rec                |       | (data, columns=labels)<br>neart'], |     |   |
| Tabs         |     |     |      |         |        |      |      |                                           | d [ ' f                                                  | <sup>F</sup> ailing<br>al_var= <b>F</b> | heart |                                    |     |   |
|              |     |     |      |         | t      | .pva | lue  |                                           |                                                          |                                         |       |                                    |     |   |
|              |     |     | Out  | [2]     | : 1    | .311 | 124  | 75174                                     | 11591                                                    | e-08                                    |       |                                    |     |   |







### Lookup result

Paper title: Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure

Authors: Saba Haddad, Yong Wang, Bruno Galy, Mortimer Korf-Klingebiel, Valentin Hirsch, Abdul M. Baru, Fatemeh Rostami, Marc R. Reboll, Jörg Heineke, Ulrich Flögel, Stephanie Groos, André Renner, Karl Toischer, Fabian Zimmermann, Stefan Engeli, Jens Jordan, Johann Bauersachs, Matthias W. Hentze, Kai C. Wollert, Tibor Kempf

Publication date: August 2016



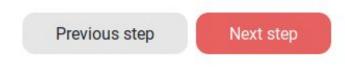
### Select the research field

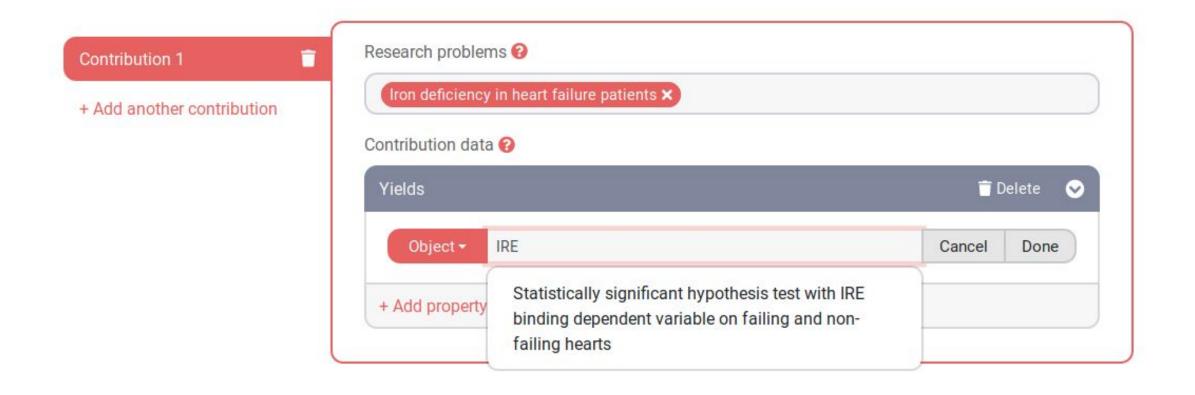
| vioral |       |
|--------|-------|
|        |       |
|        |       |
|        |       |
| es &   |       |
|        |       |
|        |       |
|        | ces & |

| - | Nutrition                               |
|---|-----------------------------------------|
|   | Forestry and Forest Sciences            |
|   | Entomology Food Science                 |
|   | Animal Sciences                         |
|   | Physiology                              |
|   | Nursing Pharmacology,<br>Toxicology and |

Environmental Health

| Comparative and Evolutiona<br>Physiology<br>Cellular and Molecular | агу |
|--------------------------------------------------------------------|-----|
| Endocrinology                                                      |     |
| Exercise Physiology                                                |     |
| Systems and Integrative<br>Physiology                              |     |


Previous step


Next step



## Specify research contributions

| Contribution 1             | Research problems 🚱                       |  |
|----------------------------|-------------------------------------------|--|
| + Add another contribution | Iron deficiency in heart failure patients |  |
|                            | Contribution data 🔞                       |  |
|                            | No values                                 |  |
|                            | + Add property                            |  |












Paper has been added successfully





### Homepage

The Open Research Knowledge Graph - or - ORKG aims to describe research papers and contributions in a structured manner. With ORKG research contributions become findable and comparable. In order to add your own research, or to contribute, learn more

### 🜟 Browse by research field

Main » Life Sciences » Physiology » Cellular and Molecular Physiology

### Cellular and Molecular Physiology papers

 Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure

### + Recently added papers

Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure

Saba Haddad

More papers



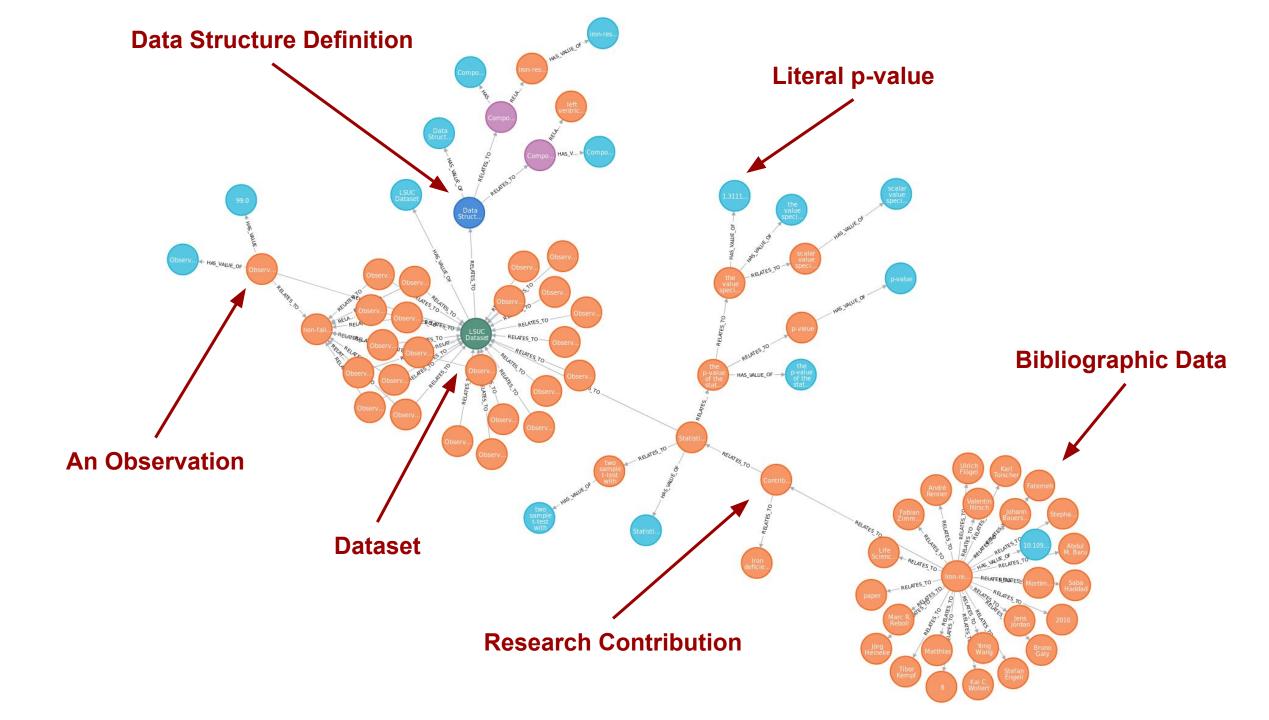
#### Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure



| Contribution 1 |         | earch problems<br>leficiency in heart failure p                                                                                                               | atients  |                               |    |                                |  |  |  |
|----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|----|--------------------------------|--|--|--|
|                | Cont    | Contribution data           Yields: Statistically significant hypothesis test with IRE binding dependent variable on failing           and non-failing hearts |          |                               |    |                                |  |  |  |
|                |         |                                                                                                                                                               |          |                               |    |                                |  |  |  |
|                | Simi    | lar contributions Show                                                                                                                                        | full com | parison                       |    |                                |  |  |  |
|                | 80<br>% | Wiles's proof of<br>Fermat's last theorem                                                                                                                     | 54<br>%  | Gruber's design of ontologies | 14 | Design criteria for ontologies |  |  |  |

| esearch problems                                                                                                   | Add to comparison                        |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| on deficiency in heart failure patients                                                                            |                                          |
| ontribution data                                                                                                   |                                          |
| Back Ma Statistically significant hypothesis test with IRE binding depend                                          | lent variable on failin                  |
|                                                                                                                    |                                          |
| Has specified output: the p-value of the statistical hypothesis test                                               | 0                                        |
| Has specified output: the p-value of the statistical hypothesis test Type: two sample t-test with unequal variance | 0                                        |
|                                                                                                                    | ©<br>©                                   |
| Type: two sample t-test with unequal variance                                                                      | ⊘<br>⊘<br>∾<br>ndent variable on failing |

#### View dataset: LSUC Dataset


000

Showing 24 observations :

| left ventricular tissue | sample        | iron-resp | onsive element binding activity |
|-------------------------|---------------|-----------|---------------------------------|
| Search                  |               | Search    |                                 |
| non-failing heart       |               | nan       |                                 |
| non-failing heart       |               | 99.0      |                                 |
| non-failing heart       |               | nan       |                                 |
| failing heart           |               | 11.0      |                                 |
| non-failing heart       |               | nan       |                                 |
| non-failing heart       |               | nan       |                                 |
| failing heart           |               | 42.0      |                                 |
| non-failing heart       |               | nan       |                                 |
| non-failing heart       |               | 96.0      |                                 |
| non-failing heart       |               | nan       |                                 |
| Previous                | Page 1 🔅 of 3 | 10 rows - | Next                            |

| Has specified output: the p-value of the statistical hypothesis test                                         | 0                   |
|--------------------------------------------------------------------------------------------------------------|---------------------|
| Type: two sample t-test with unequal variance                                                                | ۲                   |
|                                                                                                              | \$                  |
| LSUC Dataset 🖽                                                                                               |                     |
| Label: Statistically significant hypothesis test with IRE binding dependent varial<br>and non-failing hearts | ble on failing<br>📀 |

×



## **Discussion**



- Numerous challenges
  - What's the structure of scholarly knowledge
  - How granular can the knowledge model be to remain tractable
  - Implementing a multimodal infrastructure
  - Crowdsourcing relies on the "1-9-90 rule": Does the rule apply to scholarly communication?
- Interlinking with other research/science graphs
  - PID Graph
  - OpenAIRE Explore
  - Research Graph
  - Springer Nature SciGraph
  - Microsoft Academic Graph
  - Others